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Abstract— The use of simple control schemes with only a few basic 

sensors and no feedback allows improved stability when traversing 

unforeseen rough terrain by applying a single controller. 

Exploiting multiple controllers simultaneously can further 

improve robustness but is often mechanically hard to implement, 

especially when stiffness modulation is a controller. To overcome 

this limitation, we investigate and simulate a leg shape that applies 

variable leg stiffness and free-leg length. The leg shape couples the 

physical parameters with the leg angle of a monopod, while the leg 

orientation is governed with only a simple control law during the 

flight phase. We study the usage of an optimal controller coupling 

and show that it can increase robustness to perturbations in the 

initial horizontal velocity when traversing unknown rough terrain. 

This work presents the process of obtaining the optimal coupled 

parameters and demonstrates its benefits. This work also lays the 

foundations for a conceptual leg shape to exhibit the controllers 

physically.  

Keywords- legged locomotion; design optimization; minimalistic 

control 

I.  INTRODUCTION 

The ability of dynamic legged locomotion to traverse rough 

terrain is incomparable to the inherently limited ability of 

wheeled and tracked platforms [1]. Controlling dynamic legged 

robots is normally done using closed loop control, necessitating 

complex algorithms and fast and accurate sensors. What we 

term “minimalistic control schemes” require only little “live” 

low-frequency information about the terrain and the robot, 

usually with only apex and touchdown detection sensors. Such 

schemes are commonly used with the simple Spring Loaded 

Inverted Pendulum (SLIP) model [2], and govern a single 

controller, normally the leg angle relative to the ground. There 

are many examples of such control schemes, such as the Swing 

Leg Retraction (SLR) which controls the leg angle during 

decent by retracting the leg and helps to improve stability [3]. 

Other simple control methods can increase stability [4], keep 

the horizontal travel velocity constant, lower ground reaction 

forces [5] and increase efficiency [6].  

Applying only one controller at each stride can prevent a 

premature failure, but exploiting multiple controllers at once 

may be beneficial to enlarge the reachable area of the robot; 

make the robot more resistant to controller errors; and handle 

controller limits, errors or other physical constraints [7]. Yet, 

modifying multiple controllers at once is not simple, since they 

are often hard to mechanically implement and control, may 

require an external power supply, or are not fast and accurate 

enough.  

In this paper we study a variable version of the SLIP model 

to demonstrate that an optimal coupled combination of 

parameters can significantly increase robustness to unknown 

terrain level and initial conditions. We allow the free leg-length 

and leg stiffness to be modulated, albeit coupled with the leg 

angle. Specifically, we optimize the leg angle during descent 

and obtain the SLR and the continuous free leg-length and leg 

stiffness during stance. To do so, we formulate the equations of 

motion and optimization constraints and compare our results to 

an optimized ordinary SLIP model.  

Our deeper intention is to find a physical embodiment of the 

optimal coupled parameters. We assume a leg shape contacting 

the ground can passively exert the desired physical parameters, 

namely, the stiffness and the free-leg length with only one 

actuator to govern the leg orientation during flight. During the 

stance phase, the actuator is disengaged. Using such a leg shape 

can improve the robustness of a robot to perturbations in both 

terrain and initial horizontal velocity without complicating the 

control scheme. An example of such a leg shape, that resembles 

RHex’s legs [8], is described in Fig. 1, where four snapshots of 

a trajectory are depicted. 

 
Fig. 1. An example of a leg shape and its rolling during stance in (𝑥, 𝑦) plane. 

The leg shape is denoted with a black curve; the hip, where the center mass is 

located, is denoted with a red dot; and the center of pressure (COP) is denoted 

with a black circle. The red continuous line represents the orientation. The 
dashed line denotes the vector of hip to COP. The blue dots denote the trajectory 

of the hip. Stages of a stride: A: (bold) starting at initial conditions; B: 

touchdown; C: liftoff; D: reaching apex. Note that the physical link of the hip 

to the leg shape is not presented here.  
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II. RELATED WORK 

A. Minimalistic Control Methods 

Many legged robots are often modeled using the 

conservative planar Spring-Loaded Inverted Pendulum (SLIP) 

model [2] depicted in Fig. 2. Specific details about the SLIP 

model are given in Section III.  

Many works suggested simple control for the SLIP model 

that use none or only a few simple sensors with no closed loop 

control strategy. In this paper we term such control methods 

minimalistic control schemes. The SLIP model can be self-

stabilized using a fixed leg angle during descent on a flat terrain 

with no perturbation [9]. Swinging back the leg after reaching 

the apex (swing leg retraction, or SLR) increases the robustness 

of the system and copes with moderate unknown terrain 

variations [5], [10]–[14]. In SLR, the leg is brought to a 

predefined angle at apex and rotated during descent until 

touchdown.  

Correctly tuning the SLR parameters can control the robot’s 

height above preceding terrain level [10] and even keep a fixed 

relative height (yrel), which better handles unforeseen up or 

down steps [13]. Conveniently, such modification of the control 

parameters is well described by a second-degree polynomial 

[15]. Keeping the relative height above ground when traversing 

rough terrain holds several advantages (some of which have 

been stated in [5]): 1) it enables the robot to perform more 

jumps on random terrain until it fails, as all steps have “best 

knowledge” to the upcoming terrain; 2) it induces the robot to 

run at maximum averaged horizontal velocity, since only part 

of the energy is expended as potential energy; 3) the descents 

are generally limited, lowering ground reaction forces (GRF). 

Importantly, maintaining an accurate relative height from 

unknown or poorly perceived rough ground is correlated to an 

improved ability to traverse longer distances until failure [13]. 

The effect of leg stiffness modification is also presented in 

the literature. Adapting the stiffness can better control the gait 

by tuning the natural frequency [16]. Humans adapt their leg 

stiffness to accommodate changes in terrain stiffness to 

maintain similar running mechanics [17]. A segmented leg 

couples stiffness with the leg angle and can enlarge the stability 

region as a result of its nonlinear stiffness during stance [18]. 

Several other works have shown that using a stiffness-tunable 

model can reduce ground reaction [19], control the running 

speed [20], and prevent premature failure (crashing) modes at 

the end of stance [7].  

Mechanically designing robotic legs with variable stiffness 

has been attempted in running robots [21]. Traditionally, 

stiffness control in robotic mechanisms was done by adjusting 

the gains at individual joints motor level [22]. Another method, 

though not efficient, is to use nature’s inspired antagonistic 

springs [23]. Galloway, Clark and Koditschek designed a 

tunable stiffness composite C-shaped leg [24], where sliding a 

rigid spine along the leg varies the composite moment of inertia 

and stiffness while maintaining the global shape of the foot. 

This mechanism was later improved by introducing a motor to 

online tune the stiffness [22], [25]. The latter work used the 

tunable stiffness as a shock absorber, for energy efficiency 

(harmonic with actuation), and for dynamic stability. 

B. Leg Shape 

Multiple works have studied leg shapes and their influence on 

a legged robot. Running with compliant curved legs can be more 

efficient and robust with a faster recovery from perturbations 

than running with compliant straight legs [6], [26]. Adamczyk, 

Collins and Kuo showed that increasing foot curvature generally 

diminished the energy cost of walking and had an optimal value 

when the curvature radius was 30% of the leg length [27]. They 

explained that a longer foot reduces the directional change in 

velocity and thus reduces the work in step-to-step transition [28].  

Jun and Clark [6] mentioned that adapting leg parameters can 

be done passively with curved legs with no direct actuation 

because of their geometry and the involved leg circular motion 

for running. Assuming no rolling occurs during stance, they 

used the TD-TSL model with segmented legs and estimated the 

leg stiffness during stance using the PRB model for curved 

beams [29]. They mapped several combinations of the leg shape 

‘aspect ratio’ and leg angles that meet their definition for 

robustness- to run 50 consecutive steps successfully on flat 

terrain. They found the suitable leg angles for robustness merely 

for limits of the range but not as a control scheme. 

Our current paper suggests the concept of a theoretical leg 

design and leg angle control to apply simultaneous coupled 

parameters during stance. Our work resembles somewhat the 

work of Rodrigues and Mason [30], where they used spiral 

shaped fingers for invariant grasping, while we use such shapes 

for locomotion. Our hypothesis is that an optimized coupling of 

several physical parameters can reduce deviations from a 

desired yrel, which induces robustness to unpredicted ground 

levels, when errors in the initial velocity arise. We use a 

modified version of the SLIP model with variable parameters, 

namely, spring (leg) rest-length, leg stiffness, and leg angle. We 

compare our simulation findings to the optimized constant-

parameter common SLIP model and analyze the results. We 

further study the physical embodiment of a leg shape including 

the effects of rolling during stance. The shape passively 

employs the optimal coupled parameters of stiffness and free-

leg length during the stance phase. In our design, the leg is 

driven with only an orientation controller during the flight 

phase. 

 

 

Fig. 2. The 2D SLIP model 

 

 

 



III. METHODS 

A. Constant and Variable SLIP Models 

The SLIP model [2] (Fig. 2) comprises a point mass and a 

springy massless leg that eliminates impacts upon touchdown. 

The stride is divided into three recurring sections: flight 

(descent), stance, and flight (ascent). The stance equations are 

given by 

{
𝑚𝑟̈ = 𝑚𝑟𝜃̇2 + 𝑘(𝑟0 − 𝑟) − 𝑚𝑔 cos(𝜃)

𝑚𝑟2𝜃̈ = −2𝑚𝜃𝑟̇𝑟̇ + 𝑚𝑔𝑟 sin(𝜃) 
, 

(1) 

(2) 

where m is the mass, 𝑔 is the gravitational acceleration, k is the 

constant leg stiffness and 𝑟0 is the constant free-leg length. In 

this paper we use flight phase control (as opposed to the stance 

phase control), where we control the leg angle only during the 

relatively long descent period, allowing more time for control 

[14]. The leg angle actuator follows a temporal second-degree 

polynomial. During stance, the actuator is disengaged (for 

example by a mechanical clutch), which means the orientation 

of the leg is determined only by the model’s dynamics.  

In addition to the common SLIP model (what we term 

constant SLIP), we investigate a modified model, where we 

allow a modulation of the stiffness and leg-length during stance. 

Concretely, these parameters are dependent on the leg angle 𝜃 

(𝑘 = 𝑘(𝜃), 𝑟0 = 𝑟0(𝜃)). The first coupled differential equation 

regarding 𝑟̈ of the so-called variable SLIP is identical to (1); 

yet, it should be noted that 𝑘 and 𝑟0 are now dependent on 𝜃. 

Equation (2) is transformed into 

𝑚𝑟2𝜃̈ =           

      −2𝑚𝜃̇𝑟𝑟̇ + 𝑚𝑔𝑟𝑠𝑖𝑛(𝜃) −
𝑑𝑘

𝑑𝜃

(𝑟0 − 𝑟)
2

2
− 𝑘

𝑑𝑟0
𝑑𝜃
(𝑟0 − 𝑟), 

(3) 

where the last two terms in (3) are due to the variable stiffness 

and free-leg length. The derivation of the equations is outlined 

in Appendix A.  

As opposed to the constant SLIP, the nominal properties of 

variable SLIP constantly change, making the favorable non-

dimensional analysis less intuitive for the reader, thus we will 

use throughout the work the dimensional analysis. 

We expanded the second-degree leg angle polynomial to 

polynomials of stiffness and free-leg length with respect to leg 

angle. Specifically, 𝜃(𝑡) = 𝛼1𝑡
2 + 𝛼2𝑡 + 𝛼3 ; 𝑟0(𝜃) = 𝛽1𝜃

2 +
𝛽2𝜃 + 𝛽3 ; 𝑘(𝜃) = 𝛾1𝜃

2 + 𝛾2𝜃 + 𝛾3.  The polynomial of 𝑟0 

describes a leg which can vary substantially between a helix to 

an ellipse. Assuming a polynomial behavior facilitates the 

derivatives written in the variable SLIP equations, but prevents 

us from using the varying parameter models in the literature, 

like the TD-HCL [6] and the R-SLIP [31], who are both 

circular. 

B. Rolling SLIP 

The variable SLIP model, presented in Section III.A, allows 

the stiffness and free leg-length to be modified as polynomials. 

We presume a leg shape, like the leg presented in Fig. 3, can 

passively exert these physical parameters when the leg rolls on 

the ground. Rolling is the continuous change of the ground 

contact point (often termed the center of pressure, or COP) 

along the leg circumference during stance and is denoted by the  

 

Fig. 3. An example of a polynomial leg shape and related definitions 

angle 𝜃 in Fig. 3. The rotation axis is at the hip which is also the 

center of mass (COM). At each orientation, denoted by the  

angle 𝛼, the leg touches the ground at an angle 𝜃 that depends 

on the shape. The angle of the COP relative to the current 

orientation is denoted by 𝛽, leading to the relation 𝜃 = 𝛼 + 𝛽.  

As in the variable SLIP model, we assume the free-leg length 

is of the form 𝑟0(𝜃) = 𝛽1𝜃
2 + 𝛽2𝜃 + 𝛽3, and that the stiffness 

is 𝑘(𝜃) = 𝛾1𝜃
2 + 𝛾2𝜃 + 𝛾3, where −𝜋 ≤ 𝜃 ≤ 𝜋. In the present 

model, the orientation angle (𝛼) does not equal the COP angle 
(𝜃). Thus, the hip actuator, that controls the leg orientation 

during descent, follows the polynomial control law 𝛼(𝑡) =
𝛼1𝑡

2 + 𝛼2𝑡 + 𝛼3 . As in the previous models, the actuator is 

disengaged during the stance phase. 

The effect of rolling in itself was studies in several works, 

like in [6], [32], yet with no change in leg parameters. Our 

rolling SLIP model combines both rolling and the ability to 

change in mid-stance the leg’s stiffness and free length due to 

its shape. Appendix B details the derivation of the rolling SLIP 

equations. Yet, the equations of motion themselves are not 

listed in this manuscript due to their length and complexity. The 

three models are summarized in Table 1. 

C. Optimization of the Polynomials of the Three Models  

We aim to reduce deviations of a one-stride apex height from 

a predetermined relative height above unknown ground level 

when perturbations in the initial horizontal velocity are 

encountered. Keeping a relative height is related with long term 

𝛼 
𝛽 

𝜃 

COP 
Current 

orientation 

Reference 

orientation 

𝑟0(𝜃) 

Hip 

TABLE 1. SUMMARY OF INVESTIGATED SLIP MODELS 

Model Constant  Variable  Rolling  

Description COP location does 

not change during 

stance; stiffness 
and free-leg length 

remain constant 

COP location does 

not change during 

stance; stiffness 
and free-leg length 

can modulate  

COP location 

changes during 

stance; stiffness 
and free-leg length 

can modulate 

Number of 

design 
parameters 

5 9 9 

 



stability, which is our end goal. Our optimization process finds 

the optimal polynomials of the SLIP models; for the constant 

SLIP five coefficients which are 𝛼1, 𝛼2, 𝛼3 responsible for the 

leg angle rotation during flight and the constant stiffness and leg 

length; for the variable and rolling SLIP nine coefficients which 

are 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3 , 𝛾1, 𝛾2, 𝛾3 . Simply put, the trajectory 

starts from an apex of a known height and unknown (but limited) 

horizontal velocity. On its descent, the leg angle (or orientation) 

is dictated according to the temporal polynomial of 𝜃(𝑡)  (in 

constant and variable SLIP) and 𝛼(𝑡) (in rolling SLIP). During 

stance, the stiffness and free-leg length are governed by 

polynomials of COP angle (𝜃).  
The cost function is a double Euclidean norm of all deviations 

from yrel. As mentioned earlier, keeping yrel was demonstrated to 

increase the long-term robustness. In mathematical form, the 

cost function for a relative height above terrain and initial height 

level is defined as 

𝑐𝑜𝑠𝑡(𝑦0, 𝑦𝑟𝑒𝑙) = √∑

(

 √∑(y𝑟𝑒𝑙(𝑗) − (𝑦𝑎𝑝𝑒𝑥 − 𝑦𝑡𝑒𝑟(𝑖)))
2

10

𝑖=1
)

 

2

,

3

𝑗=1

 (4) 

where (𝑦𝑎𝑝𝑒𝑥 − 𝑦𝑡𝑒𝑟
𝑖 ) is the actual relative height above a tested 

ground level 𝑦𝑡𝑒𝑟 = [−0.15 ,0.15] m  (equally spaced). The 

index 𝑗  is of the initial horizontal velocity vector 𝑥̇ =
[0.3,0.5,0.7] m/sec that brackets our nominal velocity 0.5 m/
sec. We repeated the optimization for various desired relative 

height above terrain, 𝑦𝑟𝑒𝑙  = [0.2, 0.3,… , 1.5] m; and for initial 

height levels 𝑦0 = [0.5,0.6, … ,1.5] m.  

We applied the Nelder-Mead constrained optimization 

algorithm using MultiStart optimization of MatlabTM and 

repeated it (on average 3.4 times) to further validate our 

approach. We also analyzed the graphs of fval, the minimum cost 

resulting from the optimization, to spot inconsistencies. The 

optimization is subjected to non-linear constraints that 

guarantee the parameters remain physically valid at touchdown, 

and that the legs are manufacturable. All trajectories that 

encounter non-physical (negative) stiffness or free length 

during stance were penalized and hence eliminated. Moreover, 

we limited the design parameters such that the evaluated leg 

angle is limited in the flight phase to reasonable values of 

[−45°, +45°] to prevent foretold failures. The free-leg length 

and stiffness were also bounded for the values of the leg angle 

during flight: 0 ≤ 𝑟0 ≤ 0.5 m, ∀ − 45° ≤ θ ≤ 45°  and 0 ≤
𝑘 ≤ 10 kN/m, ∀ − 45° ≤ θ ≤ 45°.The parameters were not 

bounded during the stance phase, except for non-physical 

values, to prevent over-limiting. Additional constraints 

regarding the physical leg shape, relating the rolling SLIP 

model are listed in Appendix C. 

IV. RESULTS AND DISCUSSION 

A. Comparing Constant and Variable SLIP 

We performed the optimization process for each pair of 
(𝑝, 𝑞). The results with fval lower than 0.7 are depicted in Fig. 

4. The fval of the variable SLIP is generally much lower than 

that of the constant SLIP. For both, the diagonal of 𝑦0 = 𝑦𝑟𝑒𝑙  is 

a borderline of similar values of fval. Beyond this line, in the  

 

Fig. 4. Isometric overlayed view of fval for the constant (red) and variable (blue) 

SLIP in the 𝑦0 , 𝑦𝑟𝑒𝑙 plane for unknown initial horizotnal velocity. Query points 

are marked with black crosses. Note the rapid elevation in fval in the region 

𝑦𝑟𝑒𝑙 > 𝑦0. 

region where 𝑦𝑟𝑒𝑙 > 𝑦0, fval of both constant and variable SLIP 

grows rapidly. This is due to an energy barrier, meaning that the 

trajectory cannot reach the desired relative height, because it is 

too high. To further investigate, we marked four query points 

(A,B,C,D) in characteristic spots in the 𝑦0, 𝑦𝑟𝑒𝑙  plane. Table 2 

lists the fval of both the constant and variable SLIP in the query 

points, and the relative improvement of the variable SLIP over 

the constant SLIP, which is over 92% in point A. The relative 

improvement formula is depicted in the bottom row of Table 2. 

If we assume the initial horizontal velocity is known, that is, 

the initial velocity vector is simply 0.5m sec⁄ , the performance 

of keeping a relative height above ground dramatically 

improves (fval drops). Additionally, fval in both the constant and 

variable SLIP, is very similar (see Fig. 5). The findings can be 

partially explained in that the cost function considers only one 

instance of horizontal velocity, and not three, as in the previous 

case. The main reason, though, is that the constant SLIP easily 

performs the task of maintaining a relative height above terrain, 

and no significant, if any, improvement can be achieved by the 

variable SLIP. 

B.  Parameters During Stance 

We examined the actual leg stiffness and free-leg length 

during stance. For the constant SLIP, the parameters remain 

constant throughout the stance. For the variable SLIP we 

simulated the stance phase and obtained the free-leg length and 

stiffness along the phase on all terrain levels and for all 

horizontal velocities. We then took the maximum of the 

parameters for each point in the 𝑦0, 𝑦𝑟𝑒𝑙  plane and overlaid them 

in Fig. 6. The constant SLIP tends to raise stiffness and leg 

length values to accomplish the task, while the variable SLIP 

generally keeps the maximum values much lower. The bulge in 

the free-leg length in the variable SLIP, seen in Fig. 6 and listed 

in Table 3, exceeds the maximum allowed value of 0.5 m. This 

is because the non-linear constraints do not bound the values 

throughout the stance phase. We verified that the deviation from 

B 

C 

A 

D 



the maximum value does not give a significant advantage to the 

variable SLIP over the constant SLIP. Table 3 lists the 

parameters in the four query points as well as the minimum, 

mean and maximum parameters in the 𝑦0 , 𝑦𝑟𝑒𝑙  plane during 

stance. Note that the mean stiffness of the variable SLIP in 

the𝑦0, 𝑦𝑟𝑒𝑙  plane is much lower than that of the constant SLIP 

model (3.422 kN m⁄  vs 8.976 kN m⁄ ). The same occurs with the 

free-leg length that is lower in the variable SLIP (0.281 m vs 

0.454 m). The reason for these large differences may be 

attributed to the fact that the constant SLIP has fewer degrees of 

freedom; it has only one value of stiffness and leg length for all 

terrain levels and all initial horizontal velocities. Higher values 

of stiffness and leg length may not necessarily lead to an accurate 

relative height, but they are needed to prevent the body from 

colliding with the ground, which is severely penalized. 

C. Sensitivity Analysis 

We inspected the sensitivity of fval to perturbations in the 

controller values. We changed the touchdown leg angle by one 

degree with respect to the nominal expected value from the 

optimization process (i.e., 𝜃𝑝𝑒𝑟𝑡(𝑡) = 𝛼1𝑜𝑝𝑡𝑡
2 + 𝛼2𝑜𝑝𝑡𝑡 +

𝛼3𝑜𝑝𝑡 + 1deg), which is a typical experimental setup tolerance. 

Fig. 7 shows that in general, the variable SLIP is more sensitive 

to perturbations in the controllers compared to the constant 

SLIP. This may be because the variable SLIP is tailored to 

reject perturbation in initial horizontal velocity and not in other 

parameters. In other words, there is a tradeoff in the robustness. 

We proceeded and measured the change of the fval when 

perturbing the stiffness by 300 N/m  and the leg length by 

0.01 m (each perturbation by itself). Table 4 lists the nominal 

 

 
value of both the constant and variable SLIP (no parameter 

perturbation); the fval for the perturbation of each parameter; and 

the relative improvement of the variable SLIP over the constant 

SLIP. In points A and D, the variable SLIP fval is significantly 

favorable compared to the constant SLIP, although with lower 

significance compared to the nominal values. In points B and 

C, which are situated on the energy barrier and beyond it, the 

variable SLIP is inferior in perturbations in the free-leg length 

and stiffness compared to the constant SLIP. It should be noted 

that the nominal fval of both schemes in points B and C was very 

similar, meaning that these points are the boundary of the 

valuable range of using the variable SLIP over the constant 

SLIP. 

D. Unknown Initial Height 

Previous sections have assumed the initial height is known 

and have found the optimal coupling of stiffness and free-leg 

length to reach a relative height above ground for each initial 

 

Fig. 5. Isometric overlayed view of the cost value for the constant (red) and 

variable (blue) SLIP in the 𝑦0, 𝑦𝑟𝑒𝑙 plane for a known initial horizontal 

velcoity. 

 

 

 

TABLE 2. FVAL OF CHARACTERISTIC QUERY POINTS IN THE 𝑦0 , 𝑦𝑟𝑒𝑙  PLANE 

 fval 

Point A B C D 

Location [𝑦0, 𝑦𝑟𝑒𝑙] (1.5,0.9) (0.8,1.1) (1,1) (1.1,0.5) 

Constant SLIP 0.554 1.086 0.190 0.247 

Variable SLIP 0.041 1.066 0.185 0.027 

Improvement 

(
fval(𝑐𝑜𝑛𝑠𝑡)−fval(𝑣𝑎𝑟)

fval(𝑐𝑜𝑛𝑠𝑡)
) (%) 

92.60 1.84 2.63 89.07 

 

 

 
Fig. 6. Optimal parameters (maximum stiffness- top figure; maximum leg 
length- bottom figure) of the constant (red) and variable (blue) SLIP. Values 

are presented in the 𝑦0, 𝑦𝑟𝑒𝑙 plane. 

 

 

TABLE 3. MAXIMUM PARAMETERS OF THE CONSTANT AND VARIABLE SLIP 

DURING THE STANCE PHASE 

  Leg length and Leg Stiffness 

  Point 𝐲𝟎, 𝐲𝐫𝐞𝐥 plane 

 Model A B C D Min Mean Max 

Stiffness 
(kN/m) 

Constant 10 10 10 10 1.698 8.976 10 

Variable 4.390 3.078 2.908 1.180 0.993 3.422 9.994 

𝑟0 (m) 
Constant 0.5 0.5 0.5 0.5 0.165 0.454 0.5 

Variable 0.248 0.065 0.294 0.176 0.038 0.281 0.561 

 



height. This section assumes the initial height is unknown. We 

wish to find the optimal polynomials of the leg angle, stiffness 

and free length that allow reaching a relative height above 

ground while handling a noise in horizontal velocity and 

unknown initial height (within bounds). We compared the 

performance of the optimized variable and constant SLIP. The 

cost function is now a bit simpler  

𝑐𝑜𝑠𝑡(𝑦𝑟𝑒𝑙) = √∑(∑√(𝑦𝑟𝑒𝑙(𝑖) − 𝑦𝑎𝑝𝑒𝑥)
2

11

𝑖=1

)

2

.

3

𝑗=1

 (5) 

Here, the index i relates to the initial height above ground 

𝑦0 = [0.5,1.5]  m, and j remains the index of the initial 

horizontal velocity. Since the initial height is changed during 

the optimization, the terrain level expression is omitted. 

Furthermore, the optimization is repeated only for the desired 

relative height vector. 

After obtaining the optimal polynomial coefficients we used 

the polynomials to test the performance on variable terrain 

levels from various known initial heights and velocities. 

Table 5 lists the fval results. Naturally, when using 

polynomials obtained by an optimization with an unknown 

initial height, the fval is higher in both SLIP models (relative to 

a known initial height). Yet, the rise in fval is much more 

significant in the variable SLIP than in the constant SLIP. Also, 

  

 

in points B and C, the variable SLIP fval is higher relative to the 

constant SLIP. Yet, observing points A and D, the variable 

SLIP is much better than the constant SLIP. 

Examining Fig. 5, Fig. 6, and Fig. 7 allows a more 

comprehensive analysis. Relating to Fig. 5, fval for both variable 

and constant SLIP greatly increase in the region 𝑦𝑟𝑒𝑙 > 𝑦0 , 

probably due to an energy limit. Additionally, the fval values 

become very similar, leading to the thought that the variable 

SLIP polynomials are the same as those of the constant SLIP. 

Yet, the diverse actual parameters during stance in both SLIP 

models, depicted in Fig. 6 prove that the polynomials of both 

SLIP models are distinct. Due to the energy barrier, the cost of 

various polynomials is very similar. In other words, the 

polynomials are “equally bad”. Table 5 and Fig. 7 support this 

assumption; point B, which is beyond the energy barrier is the 

least affected by a leg angle perturbation. 

E. Comparing the Three Models 

Depicted in Fig. 8 are fval of all three SLIP model: constant, 

variable and rolling. It is evident that the fval of the rolling 

model is significantly lower than that of the constant SLIP. Yet, 

the non-rolling variable fval is better. This outcome can be 

explained that the rolling model is a constrained version of the 

variable SLIP model. In both models nine parameters are 

subjected to optimization, yet rolling lowers the allowable 

design parameter space.  

Each node in the 𝑦0 , 𝑦𝑟𝑒𝑙 plane in Fig. 8 comprises a set of 

the optimal parameters, of which three dictate the leg shape. 

 

 
Fig. 7. fval with a perturbed (red) leg angle of one degree and nominal value 

(blue) for the constant (top) and variable (bottom) SLIP for uknown intial 

horizontal velocities. 

 
 

TABLE 4. FVAL OF PERTURBATION OF LEG ANGLE (𝜃); STIFFNESS (𝑘); FREE-LEG 

LENGTH (𝑟0); AND THE RATE OF IMPROVEMENT OF THE VARIABLE SLIP 

RELATIVE TO THE CONSTANT SLIP 
 fval 

Perturbation Model/Point A B C D  

No 
perturbation 

Constant 0.554 1.086 0.190 0.247 

Variable 0.041 1.066 0.185 0.027 

Imprv (%) 92.60 1.84 2.63 89.07 

𝜃 Constant 0.601 1.089 0.221 0.261 

Variable 0.214 1.076 0.194 0.127 

Imprv (%) 64.39 1.19 12.22 51.34 

𝑘 Constant 0.552 1.086 0.189 0.246 

Variable 0.455 1.089 0.194 0.098 

Imprv (%) 17.57 -0.28 -2.65 60.16 

𝑟0 Constant 0.553 1.085 0.197 0.233 

Variable 0.145 1.457 0.234 0.132 

Imprv (%) 73.78 -34.29 -18.78 43.35 

 

TABLE 5. FVAL OF KNOWN AND UNKNOWN INITIAL HEIGHT FOR THE CONSTANT 

AND VARIABLE SLIP 

  fval 

Initial 

height 

Model/Point A B C D 

Known 

Constant  0.554 1.086 0.190 0.247 

Variable 0.041 1.066 0.185 0.027 

Imprv (%) 92.60 1.84 2.63 89.07 

Unknown 

Constant 0.556 1.099 0.208 0.260 

Variable 0.238 1.353 0.258 0.099 

Imprv (%) 57.19 -23.11 -24.03 61.92 

 



Plotting all the overlaid leg shapes as depicted in Fig. 9, reveals 

that they are roughly similar and that they are all left handed, 

meaning that the opening (if exists) is located on the left. No 

constraints where applied on the direction of the leg, meaning 

that a left-handed shape is favorable in minimizing the cost 

value. 

V. CONCLUSIONS AND FUTURE WORK 

This paper dealt with two main questions. The first is 

whether an optimal coupling of the leg parameters with leg 

angle controller will improve the ability to reach a relative 

height above ground, an important feature to increase stability 

of legged robots. The second topic of this paper laid the basics 

of a conceptual leg shape and its application in employing 

physical parameters upon ground contact.  

Dealing with the variable SLIP model, we speculated that an 

optimal coupling would increase robustness to unpredicted 

changes in the initial horizontal velocity when traversing 

unknown rough terrain and proved our assumption. The 

variable SLIP greatly improves—up to 92% at the points 

tested—the robustness to perturbations in the horizontal 

velocity compared with the constant SLIP. The variable SLIP 

also uses much lower free-leg length (mean: 0.281m vs 0.454 

m) and stiffness (mean: 3.422 kN/m vs 8.976 kN/m), allowing 

a more compliant leg design. The variable SLIP does 

experience higher sensitivity to parameter perturbations and 

higher cost when the initial height is unknown relative to the 

constant SLIP. Yet, this behavior is in areas where fval is similar 

to that of the constant SLIP. The variable SLIP compensates by 

keeping higher robustness in the working areas (up to 74%) for 

parameter perturbations, even when the initial height before 

descent is unknown (up to 62%).  

This paper additionally presented the foundations for a 

conceptual leg shape to support our hypothesis. We derived the 

rolling SLIP model that incorporates a rolling contact and 

manifests the ability to change physical parameters in mid 

stance, as the contact point progresses. We demonstrated that 

such a leg shape can substantially improve the robustness to 

unpredicted terrain levels and initial velocity. 

  
Our intention is to implement this work and to create a 

physical leg shape that will combine the leg angle with stiffness 

and free-leg length to manifest the optimal polynomials we 

obtained. We will use a multibody simulator such as MSC 

Adams™ and adjust some of the leg shape parameters such as 

cross-section, width and density. We will produce the leg with 

simple means like 3D printing and test it in real-life conditions.  

VI. APPENDICES  

A. Appendix A: Formulation of the Lagrangian for the 

Variable SLIP Model 

Starting with a kinematic analysis, we construct the 

Lagrangian of the hip (COM): 𝐿 = 𝑇 − 𝑉. The kinetic energy 

is 

𝑇 =
(𝑟̇2 + 𝑟2𝜃̇2)𝑚

2
. (6) 

The potential energy expression contains the expressions for 

stiffness and free-leg length that depend on the leg angle 𝜃. 

𝑉 =
𝑘(𝜃)

2
(𝑟0(𝜃) − 𝑟(𝑡))

2
+𝑚𝑔𝑟 cos(𝜃). (7) 

The derivations of the Lagrangian yields the terms 
𝑑𝑘

𝑑𝜃
 and 

𝑑𝑟0

𝑑𝜃
 

depicted in (3). 

B. Appendix B: Formulation of the Equations of Motion for 

the Rolling SLIP Model 

Following the description in Fig. 3, the location of the hip 

(COM) relative to the touchdown location of the leg in the onset 

of the stance, i.e., the touchdown, (𝑥𝑓𝑜𝑜𝑡(𝑡𝑑), 𝑦𝑓𝑜𝑜𝑡(𝑡𝑑)) can be 

written as 

𝑥ℎ𝑖𝑝 = 𝑥𝑓𝑜𝑜𝑡(𝑡𝑑) − 𝑟 sin(𝛽) + ∫ 𝑑𝑠𝑥𝑦

𝑡𝑙𝑜

𝑡𝑡𝑑

 (8) 

𝑦ℎ𝑖𝑝 = 𝑦𝑓𝑜𝑜𝑡(𝑡𝑑) + 𝑟 cos(𝛽). (9) 

Note that (𝑥𝑓𝑜𝑜𝑡(𝑡𝑑), 𝑦𝑓𝑜𝑜𝑡(𝑡𝑑)) is the location of the lowest point 

on the leg at touchdown. The integral term stands for the 

distance travelled during the stance in (𝑥, 𝑦)  coordinates. In 

more details, 𝑑𝑠x𝑦 = √𝑑𝑥
2 + 𝑑𝑦2 is the infinitesimal distance 

along the curve of the leg shape in (𝑥, 𝑦) plane. We convert this 

term to polar coordinates, since we will use them in the 

 
Fig. 8. Isometric overlayed view of fval for the constant (red), variable (blue) 

and rolling (black) SLIP in the 𝑦0 , 𝑦𝑟𝑒𝑙 plane. 

 
 

 
Fig. 9. Optimal leg shape in (𝑥, 𝑦) plane for the points 𝑦0𝑦𝑟𝑒𝑙 depicted in Fig. 

8 The hip is located in location (𝑥, 𝑦) = (0,0) 

 
 



formulation of the stance phase equations. We use the location 

of the hip relative to the current point of contact with the ground 

(𝑥ℎ𝑖𝑝 , 𝑦ℎ𝑖𝑝) = (−𝑟0 cos(𝜃) , 𝑟0 sin(𝜃)) , and the derivatives 

with respect to 𝜃 to obtain the useful term  

𝑑𝑠𝑥𝑦 = √𝑟0
′(𝜃)2 + 𝑟0 (𝜃)

2 𝑑𝜃. (10) 

Equation (8) is transformed to 

𝑥ℎ𝑖𝑝 = 𝑥𝑓𝑜𝑜𝑡(𝑡𝑑) − 𝑟 sin(𝜃) + ∫ √𝑟0
′(𝜃)2 + 𝑟0 (𝜃)

2 𝑑𝜃
𝜃

𝜃𝑡𝑑

, (11) 

while (9) remains unchanged. Note that the travel on the ground 

considers only the nominal leg circumference (𝑑𝑠 = 𝑓(𝑟0)) 

without accounting for the compression of the leg shape, since 

the total circumference length is preserved. 

For creating the Lagrangian, we derive the location of the hip 

with respect to time using the fundamental theorem of calculus 

and obtain the velocity of the hip 

𝑥̇ℎ𝑖𝑝 = −𝑟̇ sin(𝛽) − 𝑟𝛽̇ cos(𝛽) + √𝑟0
′(𝜃)2 + 𝑟0 (𝜃)

2  𝜃̇  

𝑦̇ℎ𝑖𝑝 = 𝑟̇ cos(𝛽) − 𝑟𝛽̇ sin(𝛽). 

 (12) 

(13) 

The state variables are 𝑟 and 𝜃 and their derivatives. As such, 𝛽 

and 𝛽̇ are to be represented in terms of 𝜃 and 𝜃̇. To do so, we 

write the expression for the vertical coordinate of the COP 

relative to the hip 

𝐶𝑂𝑃𝑦 = −𝑟0(𝜃) cos(𝛽). (14) 

The touchdown angle 𝛽 can be found by finding the minimum 

of the leg location at y coordinate, i.e., by solving the equation 
𝑑𝐶𝑂𝑃𝑦

𝑑𝛽
= −𝑟0

′(𝜃) ∙
𝑑𝜃

𝑑𝛽
cos(𝛽) + 𝑟0(𝜃) sin(𝛽) = 0, (15) 

where 𝑟0
′(𝜃) = 𝑑𝑟0/𝑑𝜃. Since 𝜃 = 𝛼 + 𝛽, 

𝑑𝜃

𝑑𝛽
= 1. Thus,  

𝑑𝐶𝑂𝑃𝑦

𝑑𝛽
= −𝑟0

′(𝜃) cos(𝛽) + 𝑟0(𝜃) sin(𝛽). (16) 

Equating (16) to zero yields  

𝛽 = atan(𝑟0
′(𝜃)/𝑟0(𝜃)). (17) 

As 𝛽 = 𝑓(𝜃), 𝛽̇ = 𝜃̇ ∙ 𝛽′, which leads to  

𝛽̇ = 𝜃̇ ∙ 1/ (1 + (𝑟0
′(𝜃)/𝑟0(𝜃))

2
) ∙
𝑑(𝑟0

′(𝜃)/𝑟0(𝜃))

𝑑𝜃
. (18) 

Substituting (17) and (18) into (12) and (13), we can now 

formulate the Lagrangian with the state variables only. We state 

the kinematic and potential energies. The kinetic energy is  

𝑇 =
(𝑥̇ℎ𝑖𝑝

2 + 𝑦̇ℎ𝑖𝑝
2)𝑚

2
. (19) 

The potential energy expression is the same as (7) (see 

Appendix A).  

The equations of motion for the rolling SLIP are too 

combersome to fit within the paper and do not offer intuition 

either and are thus omitted.  

C. Appendix C: Leg Shape Constraints 

The use of a leg shape imposes additional constraints on the 

optimization process detailed in the Section III. Depicted in Fig. 

10 are an example of a valid leg shape, where the leg’s 

circumference allows a smooth terrain contact; and an invalid 

leg shape with a cusp that will cause contact discontinuity while 

rolling. The red curve in Fig. 10 describes the lowest point on 

the leg and follows the parametric curve  

𝑥 = 𝑟0 sin(𝛽) 
𝑦 = −𝑟0 cos(𝛽). 

(20) 

To prevent a cusp in the leg shape, the parametric curve must 

have only one maximum at most in the rotation region. 

Mathematically, we demand that 𝑑2𝑦/𝑑𝑥2 < 0. Solving this 

inequality symbolically is very hard, if not impossible, so we 

used the Monte Carlo sampling method and manually defined 

constraining conditions on the leg shape polynomial.  
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