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This paper presents a novel methodology for localiza-
tion and terrain mapping along a defined course such
as narrow tunnels and pipes, using a redundant un-
manned ground vehicle kinematic design. The vehicle
is designed to work in unknown environments without
the use of external sensors. The design consists of two
platforms, connected by a passive, semi-rigid three-
bar mechanism. Each platform includes separate sets
of local sensors and a controller. In addition, a cen-
tral controller logs the data and synchronizes the plat-
forms’ motion. According to the dynamic patterns of
the redundant information, a fusion algorithm, based
on a centralized Kalman filter, receives data from the
different sets of inputs (mapping techniques), and pro-
duces an elevation map along the traversed route in
the xxx-zzz sagittal plane. The method is tested in vari-
ous scenarios using simulated and real-world setups.
The experimental results show high degree of accuracy
on different terrains. The proposed system is suitable
for mapping terrains in confined spaces such as under-
ground tunnels and wrecks where standard mapping
devices such as GPS, laser scanners and cameras are
not applicable.

Keywords: signal estimation, data fusion, robotic sens-
ing, robot control, robotic terrain mapping

1. Introduction

The use of Unmanned Ground Vehicles (UGVs) is
common in many applications and environments. UGVs
are suitable for a large variety of tasks in agriculture,
search & rescue, and security missions, since they can
perform tedious or dangerous tasks. For instance, a UGV
can travel where humans are currently unable (e.g., Mars)
or wish to avoid (e.g., mine fields). An increasingly popu-
lar mission for field robotics is terrain mapping. While in

some scenarios it is possible to map the terrain using Un-
manned Aerial Vehicles (e.g., [1]), the use of autonomous
ground vehicles has significant advantage in others. Un-
derground or covered terrains cannot be analyzed from the
air, and the ability to sense and map the surface makes the
UGV an appropriate candidate for such missions. A typ-
ical example might be the mapping of a collapsed struc-
ture after a major disaster in search and rescue mission. In
such a scenario, the vehicle cannot utilize GPS data, and
the performance of some sensors such as laser scanners
and cameras may be limited due to the complex structure
and constraints of the environment. Additional important
application is mapping underground tunnels and pipes
(e.g., water, sewage, oil, air-conditioning etc.) where hu-
mans cannot operate, and the use of external sensors is
limited or even impossible.

One of the main challenges in the operation of ground
vehicles is localization, and inaccuracy in localization
leads to a significant error in mapping. Non-ideal surface
conditions and external effects such as weather and/or sur-
face irregularities increase the odds for vehicle slippage,
which is undetected by a standard odometric method. In
order to reduce the effect of those disturbances, mod-
els for slippage estimation were developed. One model
proposes investigating the kinetic behavior of a planetary
rover, with attention to tire-soil traction mechanics and ar-
ticulated body dynamics when the rover travels over natu-
ral rough terrains [2]. A control method uses the estimated
slip ratio value to minimize odometric errors and to limit
excessive tire force. Therefore, the rover is able to suc-
cessfully traverse over obstacles without digging into the
soil. Another method presents an algorithm for determin-
ing the nominal driving track forces of motions along a
specific path at a desired speed [3]. The latter requires
sufficient information regarding the terrain explored by
the vehicle. This information may be unavailable or inac-
curate when traveling along an unknown or complex en-
vironment. A different approach controls each of the ve-
hicle’s wheels independently [4]. Each wheel is equipped

106 Journal of Robotics and Mechatronics Vol.30 No.1, 2018



Sensor Data Fusion of a Redundant Dual-Platform Robot

with a motor and a rotation sensor such that the vehicle’s
maneuverability increases while reducing odometric er-
ror. Moreover, an additional gyroscope is placed on the
vehicle to further reduce the odometric errors. Successful
terrain mapping requires particular algorithms and meth-
ods such as SLAM (Simultaneous Localization and Map-
ping) [5, 6]. SLAM is a process that simultaneously builds
a map of an unknown environment and determines the ve-
hicle’s location in that map. First, the vehicle’s controller
constructs a map of its surrounding, and then determines
its location by identifying distinct or well-defined features
in the terrain, called landmarks. The identification and es-
timation of the landmarks’ position relative to the vehicle
is crucial for the process. The vehicle constantly takes rel-
ative observations of the landmarks, while moving in the
unknown environment. These landmarks are correlated
with each other, and an error in the identification and/or
localization of one landmark affects the other [7, 8]. One
of the solutions for enhanced vehicle position estimation
is the use of Extended Kalman Filter (EKF) in the SLAM
process. The basis for the EKF-SLAM method is to de-
termine the vehicle’s motion with a kinematic and an ob-
servation (measurements) models. Each model contains
Gaussian disturbance/error parameters that evaluate the
“noise” level of the model and the observation. Each time
an observation is made, the landmarks and the model pa-
rameters are updated.

Here we survey only several SLAM applications out
of many. Applications using SLAM with range-only sen-
sors [9–11] and bearing only sensors [12, 13] show that
a single measurement is insufficient for a reliable land-
mark localization. A ground robot, equipped with a 2-D
Laser Range Finder (LRF), mounted at a fixed angle
facing downwards, is examined for use in terrain map-
ping [14]. In this system, a mapping algorithm generates
a 3-D map based on the range information using Hidden
Markov Models. Each step is classified as navigable or
un-navigable, producing a complete map that shows the
safe and unsafe areas for traveling. A distributed method
is proposed in [15] by using map sharing for estimating
locations and improving a global map building process.

Depth cameras are also commonly used for terrain
mapping. A robot, equipped with two CCD (2-D) and
one PMD (Photonic Mixer Device – able to capture 3-D
static images) cameras [16] is used for mapping interior
rooms and hallways. Another terrain mapping method
uses stereo vision technique [17, 18]. The technique pro-
duces a quality map for far objects and wide areas. For
low surface terrain, such as narrow spaces, models includ-
ing additional sensors such as LRF [19] provide proper
solutions. A set of binary detectors [20] have been imple-
mented to identify different objects and surface changes,
producing a compact terrain map from each frame of
the stereo images. The mapping algorithm labels cells
that contain obstacles as no-go regions, and encodes ter-
rain elevation, terrain classification, terrain roughness,
traversability cost, and a confidence value. The single
frame maps are then merged into a world map, where tem-
poral filtering is applied. In scenarios where geometric

models are difficult to measure, different solutions such
as vector-field SLAM [21] and Bayesian-field SLAM [22]
are proposed, where instead of using geometric models,
measurable spatial fields are exploited. Another solution
for a large-scale terrain is using a Gaussian-process mod-
eling approach [23]. When sensor information is cor-
rupted or incomplete, a Gaussian-process is applied for
estimating and interpolating information across the field.
The process uses the spatial correlation of the given data
points to estimate the elevation values for unknown points
of interest.

There is a growing interest in the SLAM research in
using only interoceptive information for localization and
mapping, as some applications and environments do not
allow the use of exteroceptive sensors. The dependency
on external sensors such as GPS or cameras is inappli-
cable in many cases. As a typical example consider the
Spirit Mars exploration rover. The rover was equipped,
among other sensors, with a stereovision panoramic cam-
era (PanCam). The PanCam contained two CCD high res-
olution cameras with special filters and infra-red sensors.
In addition, the rover had two pairs of stereo black-and-
white cameras under the solar panels facing to the front
and the back, and a navigation camera (NavCam) with el-
evated 45◦ field of view for looking ahead. Despite this
wide range of cameras and sensors, Spirit got trapped in
a soft sand soil, that eventually brought the mission to its
end.

The work presented in this paper uses an autonomous
system, which utilizes only interoceptive sensors for ter-
rain mapping by implementing a novel data fusion ap-
proach. As described above, the traditional SLAM meth-
ods fuse interoceptive sensing, typically odometry and
IMU with exteroceptive sensing (e.g., Lidar [24, 25], cam-
era, or depth images) to find the current pose. It then
matches the information from the interoceptive and ex-
teroceptive sensors to build a map. In our method, we
enhance the interoceptive sensing by combining the re-
dundancy of a novel vehicle with two sets of sensors and
the kinematic relationship between them. This way we
receive an elevation map of the terrain while reducing the
localization error.

2. Hardware Configuration

In this section, we describe the hardware configuration
of the UGV that enables the proposed localization and
mapping methodologies.

2.1. The Redundant Dual-Vehicle Robot
The current work utilizes a design similar to the one

used in [26]. This design is suitable for our proposed test
experiments for algorithm validation. Different platforms
(size and structure) may be applied using the proposed
approach, depending on the task in hand.

The system (Fig. 1) consists of two platforms con-
nected with an articulated mechanism.
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Fig. 1. The research prototype. Platform size is 34× 40×
25 cm with a 64 cm long connecting beam.
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Fig. 2. The 6-DOF mechanism contains two joints for plat-
forms’ rotation, three joints for pitch movement and one
joint for roll.

The connecting mechanism is a three-beam structure
(Fig. 2) in which a rotation sensor (e.g., encoders or po-
tentiometers) continuously measures the position (angle)
of each joint. This mechanism allows relative motion
measurements of each platform in relation to the other
platform.

The connecting mechanism consists of six revolute
joints, each with limited stroke, to enable limited inde-
pendent motion of each platform. The three joints located
near to the leading platform (Platform I in Fig. 2) enable
yaw rotation of the platform along the vertical axes (α6)
and pitch rotation along the horizontal axis (α4, α5). The
three joints located near to the rear platform (Platform II)
enable pitch rotation along the horizontal axes (α3), yaw
rotation along the vertical axis (α1) and a roll rotation
along the vertical axes (α2). This connecting mechanism
allows a 6-DOF relative articulation of each platform, re-
gardless of the motion of the other platform, particularly
due to unexpected changes in the surface. For instance, if
the robot reaches a ramp, joints’ angles α4, α5 of the lead-
ing platform and α3 of the rear platform are affected. If, in
another scenario, only one side of a platform climbs over a
short obstacle (e.g., a rock), then α2 is affected. Similarly,
if the leading or the rear platform rotate (e.g., due to slip-
page), then α6 or α1 change accordingly. In addition, each
platform contains local sensors such as encoders attached
to the driving wheels for the odometric model, and incli-

nometers and gyroscopes (embedded in an Inertial Mea-
surements Unit (IMU)), which provide data on the plat-
forms’ orientation. This redundant design provides sev-
eral data sets (inputs to the fusion model) to produce an
accurate localization and terrain mapping.

2.2. The Control System
The control system consists of three control units:

Two Local Units (LUs) and one Centralized Control Unit
(CCU). The LUs control the platforms’ motion and ex-
ecute the odometric calculation for estimating the plat-
forms’ localization (based on the wheels’ dynamics). The
CCU receives the data from each platform via a Wi-Fi
network, and coordinates the motion of both platforms by
sending real-time commands. These commands improve
the robot’s maneuverability and adjust the platforms’ mo-
tions in case of a slippage. In addition, the CCU logs
the data received from all the sensors in the system. The
control architecture and the design of the robot provide
three modes of operation. The first two modes are man-
ual: Dual and Single modes. In the Dual mode, the op-
erator controls both platforms with the same command,
while in the Single mode the operator controls each plat-
form separately. These two modes are used for manually
assisting the robot to overcome special obstacles and to
perform sharp maneuvers in cluttered surroundings. The
third mode is the Autonomous mode, which serves as the
main operational mode. In this mode, the CCU sends mo-
tion commands to the two LUs according to the updated
sensory data. The CCU identifies the relevant features
of the terrain and the robot’s behavior, and changes the
motion pattern according to the required mission. For ex-
ample, if the robot is required to travel along a straight
line, the CCU corrects odometric errors by adjusting the
motion of both platforms in order to maintain accurate tra-
jectory. Alternatively, if the robot is required to perform
a lateral or angular motion, the CCU determines the re-
quired motion from each platform, and verifies that these
motions are executed properly.

2.3. Sensor Data Acquisition
Odometric models [27] are being used to estimate the

platforms’ positions based on the left and right encoders
placed on each wheel. The platforms’ velocities are de-
termined by the derivation of the momentary position of
the wheels. In addition, a 6-DOF IMU provides three ab-
solute angles of yaw (ψ), pitch (θ ) and roll (ϕ) and their
respective derivatives. The raw data from both platforms
are restored and processed (using the data fusion algo-
rithm) in the CCU for producing the terrain map (both
on/off-line), as described in the following section. In our
approach, the platforms do not directly communicate with
each other, although it is possible but due to the central-
ity of the algorithm we choose to handle the data in the
external computer.
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Fig. 3. Pitch and roll projection of robot position in world
coordinate system.

3. Elevation Map Construction

As previously mentioned, this research focuses on con-
structing an elevation map in the x-z sagittal plane, assum-
ing motion in the y-direction is constrained (e.g. inside a
narrow tunnel or a pipe). Given the dual platform mech-
anism described in the previous section, the position co-
ordinates of platform i in the x-z sagittal plane are given
by {

xi,k = xi,k−1 +νi,k−1 · cos(θi,k−1)
zi,k = zi,k−1 +νi,k−1 · sin(θi,k−1),

. . . . (1)

where k is the current time step, νi,k−1 is the velocity com-
mand and θi,k−1 is the pitch angle of the platform rela-
tive to the horizon, computed by the IMU for platform i.
i = 1,2 refers to leading and rear platforms respectively
(Fig. 3).

Using data from the connecting mechanism, an estima-
tion of the position of platform 1 (leader) relative to plat-
form 2 (rear), denoted by (x21,k,z21,k), is determined using
forward kinematics, given by the homogeneous transfor-
mation matrix⎧⎪⎪⎨

⎪⎪⎩
T 6

2 = T 6
5 T 5

4 T 4
3 T 3

2 =

[
R6

2 d6
2

0 0 0 1

]

(x21,k,z21,k) = T 6
2 · (x2,k,z2,k),

. . (2)

where each homogenous transformation matrix T j
i is

composed of a rotation matrix R j
i and a translation vector

d j
i . The position of the rear platform (x2,k,z2,k) is given by

its odometric model (Eq. (1)). We call this transformation
the Forward Kinematic Transform (FKT). Once this cal-
culation is performed, two planner maps (in the x-z plan)
are produced – the leading platform map produced by its
odometric model, and the FKT map.

A third map is produced using a Time-Transform (TT)
method. Since each platform constructs its own map
along the travelled trajectory using its IMU and odomet-
ric model, and assuming that the rear platform follows
the trajectory of the leading platform, each point along
the trajectory is “visited” by both platforms with a time
lag between them. The two maps, with the time lag
can be used to generate a third map. For instance, if at

time (step) k = 10 the leading platform reached the lo-
cation of (x1,10,z1,10), after time lag τ , the rear platform
reaches position (x2d,10,z2d,10) = (x2,10+τ ,z2,10+τ) and
in an environment with no disturbances (x1,10,z1,10) =
(x2d,10,z2d,10).

In a more general way

(x2d,k,z2d,k) = TT (x2,k,z2,k)

=

{
(x2,k+τ ,z2,k+τ), k ≤ kmax − τ

(x1,k,z1,k), else.
(3)

In an “ideal” world, the three maps are identical. How-
ever, this is not the case in most scenarios. Due to the
sensitivity and the noise level of the sensors, tolerances
and differences in the mechanical structure (for example -
different air pressure in the wheels), and odometric effects
(longitudinal and lateral slippage, bumps, holes etc.), the
three maps are different. In order to obtain a more reli-
able elevation map of the terrain, there is a need to fuse
the data gathered from all sensors’ sets. For that, we use
a Centralized Kalman Filter (CKF), as discussed in the
following section.

4. Centralized Kalman Filter (CKF)

4.1. Fusion Algorithm
A Discrete Kalman Filter (DKF) is suitable for data

fusion and filtering of systems in which the models and
observations can be described by a linear connection, or
when a model linearization has minimum effect on the
results. In our system, the robot’s motion model is non-
linear (e.g., forward kinematics is trigonometric), there-
fore we use an extension of the DKF known as Extended
Kalman Filter (EKF). EKF is used in problems that re-
quire filtering and data fusion from different sensors with
non-linear relations between their state vector variables.
Sensor fusion adds some requirements compared with
the standard Kalman Filter method, and several modifi-
cations have been suggested [28, 29] (i.e., sensor fusion
model and estimated state mean). In our system, the CKF
method is chosen due to its adaptive fusion technique.
The CKF calculates the mean of the Kalman gain and the
measurement vector differential equation. The Kalman
gain represents the relations between the relative measure-
ment and the predicted state estimate. When the gain is
high, the filter increases the weight of the measurements;
otherwise, it follows the model predictions more closely.
The CKF structure is more flexible and allows the algo-
rithm to perform an evaluation of the measurements qual-
ity, and therefore to adjust its effect at each step. By doing
so, the CKF reduces the total error, as will be shown in the
next sections. In our current system, the state and mea-
surement vectors are governed by the non-linear stochas-
tic difference equations [30]:{

sk = f (sk−1,uk−1,wk−1)
mk = h(sk,νk),

. . . . . . . (4)
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where wk−1 and vk are random variables representing the
process and measurements noises. In practice, those val-
ues are unknown at each step, and the following approxi-
mated state model is being used:{

ŝk = f (ŝk−1,uk−1,0) = f (x̂k−1, ẑk−1, θ̂k−1,νk−1)
m̂k = h(ŝk,0),

(5)

where x̂k−1, ẑk−1 are the robot’s positions along the trajec-
tory, θ̂k−1 is the pitch angle and νk−1 is the velocity com-
mand. The state function f is according to Eq. (1) and
the measurement function h is simply h(ŝk,0) = [x̂k, ẑk]

T .
To estimate a process with non-linear difference and mea-
surement relationships, a new set of linearized equations
are developed:{

sk ≈ ŝk +A · (sk−1 − ŝk−1)+W ·wk−1

mk ≈ m̂k +H(sk − ŝk)+V ·νk,
. . (6)

where sk, sk−1 and mk, mk−1 are the actual state and mea-
surement vectors, ŝk, ŝk−1 and m̂k, m̂k−1 are the approxi-
mate state and measurement vectors and wk−1,vk are the
process and measurement noise random variables. The
matrices A, W , H, V are the Jacobean matrices of the par-
tial derivative of f with respect to s, w and h with respect
to s, v:⎧⎪⎪⎨
⎪⎪⎩

Ak
i, j =

∂ fi

∂ s j
(ŝk−1,uk−1,0), W k

i, j =
∂ fi

∂ w j
(ŝk−1,uk−1,0)

Hk
i, j =

∂ hi

∂ s j
(ŝ −

k ,0), V k
i, j =

∂ hi

∂ ν j
(ŝ −

k ,0),

. . . . . . . . . . . . . . . . . . . . . (7)

These matrices are calculated at each step for every vari-
able in the state vector. The CKF algorithm is imple-
mented in two steps per iteration (Fig. 4).

1. A-Priori Estimation (Prediction):
The a-priori estimation step is given by{

ŝ −
k = f (ŝ −

k−1,uk−1,0)

P −
k = AkPk−1AT

k +WkQk−1W T
k ,

. . . . (8)

where ŝ −
k and P −

k are the a-priori state vector and error
covariance estimates at step k respectively. The matrices
Ak and Wk are the Jacobean matrices of the partial deriva-
tives of f with respect to ŝ −

k and wk respectively. wk is
the process white noise with normal probability distribu-
tion of p(wk−1)∼N(0,Qk), where Qk is the process noise
covariance.

2. Post-Priori Estimation (Measurement update):
The post-priori estimation step is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ki,k = P −
k HT

k (HkP −
k Hk T +VkRi,kV T

k )−1

ŝk = ŝ −
k +

1
N

N

∑
i=1

Ki,k ·
(
mi,k −h(ŝ −

k ,0)
)

Pk =

(
I− 1

N

N

∑
i=1

Ki,kHk

)
P −

k ,

(9)

(Eq. (8)) (Eq. (9))

Fig. 4. CKF algorithm procedure.

where Ki,k is the Kalman gain (blending factor) that min-
imizes the posteriori error covariance for each mapping
technique (i = 1 : N). In our case, N = 3: Leading
platform, Rear platform Forward-Kinematics Transform
(FKT) and Rear platform Time-Transform (TT). ŝk and Pk
are the post-priori state and error covariance estimates at
step k respectively. The measurement vector mi,k is deter-
mined according to Eqs. (1), (2), and the time-lag (TT)⎧⎨

⎩
m1,k = (x1,k,z1,k)
m2,k = (x21,k,z21,k) = FKT (x2,k,z2,k)
m3,k = (x2d,k,z2d,k) = T T (x2,k,z2,k),

. (10)

where FKT is the Forward Kinematics Transform and TT
is the Time Transform.

The difference
[
mi,k −h(ŝ −

k ,0)
]

is called the measure-
ment innovation (or the residual). The measurement noise
covariance matrix Ri,k is defined by

Ri,k =
[

σ2
i,xk

0
0 σ2

i,zk

]
, . . . . . . . . . . (11)

where σ2
i,xk

and σ2
i,zk

are the measurement noise covari-
ance parameters in step k for each platform.

The matrix Ri,k is dynamic and is updated during the
process. The covariance represents the reliability of the
measurement – the higher it is, the less confident the cur-
rent measurement is. During the process, the covariance
parameters are updated according to the following param-
eters:

•
√

z2
i,k − z2

i,k−1 > ε1: The error between the current
and the previous steps. The error (ε1) is subjected to
a significant difference between the two steps (e.g.,
due to noisy measurement). This verification applies
for each platform independently.

•
√

z2
i,k − z2

j,k > ε2: The error between the different
measurements according to each mapping technique.
This calculation is performed at each step. Once
the differences are higher than an empiric parameter
(ε2), all three Ri,k are being affected by increasing
the standard deviation values.

The matrices Hk and Vk are the Jacobean matrices of
the partial derivatives of h with respect to ŝ −

k and vk re-
spectively. vk is the measurement white noise with normal
probability distribution of p(vk) ∼ N(0,Rk).

As described above, the fusion procedure is defined
by the measurement noise covariance matrix Ri,k and the
Kalman gain Ki,k for each platform. Averaging is con-
ducted to calculate the post-priori state and error vectors
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Fig. 5. Mapping procedure scheme relatively to the leading
platform.

ŝk and Pk. Later, we show that the mapping errors pro-
duced by the three techniques are reduced by adapting
the correlation parameters in the CKF algorithm. The
measurement noise covariance matrix Ri,k considers the
weight of each platform in the mapping procedure at the
current step. Fig. 5 illustrates the three data inputs of the
CKF fusion algorithm. In this figure, the parallel inputs
are divided as follows. In the top input, the front platform
produces the leading platform’s map. In the middle input,
the front platform performs the forward kinematics trans-
formation, estimating the position of the leading platform
based on the connecting mechanism data and the position
of the rear platform. In the bottom input, the rear platform
represents the time transformation, i.e., the measurements
of the rear platform once arriving at the position of the
leading platform after a time-lag.

4.2. Adaptive Model Parameters for Improved
Mapping

The CKF equations, as described above, are updated
every time step:

[sk,Pk] = CKF ( f ,sk−1,Pk−1,h,mk,Q,R,wk,vk) , . (12)

where the measurement noise covariance matrix Ri,k
(Eq. (11)) is dynamic. In order to further enhance the per-
formance, an adaptive velocity command is implemented.
Due to gravity and the coupling mechanism between the
platforms, the robot consumes more power while climb-
ing compared with moving down, resulting in different
speed. In order to maintain constant speeds, the CCU in-
terferes with the velocity commands of the LUs when a
slope (slows down) or an incline (increases speed) are de-
tected by the IMU system.

5. Experimental Results

This section describes the experimental results of the
proposed system. The experiments consist of dynamic
simulations and actual experiments in laboratory and real
world scenarios. For validation, the mapping algorithm
output is compared with the actual terrain geometry. In
addition, the algorithm performance is compared with the
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Fig. 6. Multiple slippages simulation. The algorithm man-
age to reduce the error and produces a reliable map.

leading platform odometric mapping results, which serve
as a benchmark performance value.

5.1. Simulation Results
This section presents simulation results of several sce-

narios, analyzing the sensitivity of the mapping algorithm
to odometric errors such as slippage, and to sensors errors
such as bias and drift. In addition, the CKF algorithm cal-
ibration and robustness are examined as a preparation for
the actual real-world experiments.

First, a simulation with multiple slippages of the lead-
ing and rear platform (Fig. 6) is conducted while travers-
ing over a bump. This simulation examines the effects of
multiple slippages on the raw data and the way the algo-
rithm manages to reduce the total errors. In this scenario,
the differences between the maps produced by the lead-
ing platform and the CKF are minor, with small error re-
duction by the CKF, mainly at the end of the bump. In
the next simulation set, a white noise of the IMU simula-
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Fig. 7. White noise in both IMU sensors. The CKF behaves
as a low-pass filter which reduces the overall error.

tion (Fig. 7) is added to observe the performance of the
CKF in case of noisy measurements. The CKF reduces
the mapping error by over 200% due to the Kalman fil-
ter “original” characteristics. A simulation of multiple er-
rors (Fig. 8) is a combination of the two former scenarios.
It simulates multiple slippages for both platforms, com-
bined with IMU errors. While the leading platform error
increases, the CKF algorithm manages to maintain the er-
ror at a constant level. The final simulation examines a
scenario of multiple bumps (Fig. 9). It consists of two
bumps, each with a different geometry, and a horizontal
section between them. This scenario is more challenging
compared with the previous scenarios, due to slippage and
pitch error measurements on both platforms. As observed
in the previous simulation scenarios, the CKF algorithm
presents better mapping results.

5.2. Indoor and Outdoor Experimental Results
This section describes the results of indoor and outdoor

experiments. The purpose of these experiments is to ex-
amine the performance of the mapping algorithm in a re-
alistic and controlled environment. At each scenario, after
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Fig. 8. Multiple errors – bias in IMU measurements and
multiple slippages in both platforms. While the leading plat-
form error is constantly increasing, the algorithm manages
to maintain a significantly lower error.

the robot completes its motion, the fusion-mapping algo-
rithm produces an elevation map using the obtained raw
data. Each scenario is repeated ten times and a map of the
averaged results with standard deviation is produced.

The initial experimental setup includes a single bump,
consisting of a 14.5 cm height with 20◦ slopes and a 2 m
horizontal section (Fig. 10a). The total route distance is
3.7 m. Due to the bump’s structure, the robot faces four
points of significant-changes in the terrain. The mapping
results of the leading platform and the CKF are shown
in Fig. 11. The leading platform obtains different re-
sults when repeating this scenario, but the CKF manages
to maintain similar outputs. In the multiple bumps sce-
nario, the terrain consists of two different bumps. The
first bump consists of 11.5 cm high with 11◦ slope and
a 2.5 m horizontal part, and the second bump consists of
14.5 cm high with 20◦ slope and a 2 m horizontal sec-
tion (Fig. 10b). Again, each experiment is repeated ten
times at each direction. The combined mapping results
are shown in Fig. 12. As shown, the CKF algorithm re-
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Fig. 9. Multiple bumps simulation including errors such
as sensors bias and slippage. Here, the CKF manages to
decrease the error toward the second bump. In addition, the
simulation shows that the error is reduced after crossing the
bump due to opposing measurements (incline vs. decline).
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Fig. 10. Experiments setup. Single bump (a) flat wooden
plate placed of a flat road. Multiple bumps (b) the first bump
is lower and longer than the second bump. Rough terrain
(c) the gravel ground is constantly changing making it diffi-
cult for mapping. The terrain includes three different bumps
(height and width).

Fig. 11. Single bump mapping results. The dashed and solid
lines represent the average result of the leading platform and
the CKF respectively. The grey and dark grey areas around
those lines represent the standard deviation. The significant
differences between the leading platform and the CKF is sig-
nificant in the bump’s slope (greater than 60%). The average
mapping error of the CKF is lower than the leading platform
by around 50%.

duces the mapping error compared with the leading plat-
form results.

The final experiment is conducted in a rough terrain en-
vironment set-up (Fig. 10c) along a 16 m trajectory that
includes three natural bumps. After the robot completes
its motion, the travelled surface geometry is accurately
measured, using an orthogonal surface height measure-
ment device. Due to the rough terrain, the robot tends to
slip, resulting in noisy IMU measurements. Fig. 13 shows
the raw data inputs and the mapping results. Although the
raw data has many errors, the CKF reduces these errors
and produces a map close to the surface of the real rough
terrain.

5.3. Discussion
The results of the experiments for a single (Figs. 6

and 11) and multiple bumps (Figs. 9 and 12) scenarios are
similar to the simulation forecast. Similar behaviors in the
slope area (peak at the beginning of the slope) and reduced
error at the end of the bump are observed. As examined
in the simulation, various errors such as slippages (Fig. 6)
and noisy IMU measurements (Figs. 7 and 8) provide an
explanation to this behavior. When slippage occurs during
extreme change of the train, in addition to IMU measure-
ment error during slope descending, the mapping error is
reduced. This error reduction is caused by gravity and
the gradient of the slope [31]. During motion along the
slope, the robot accelerates, which results in a shorter de-
scent time compared with ascending the inclination. This
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Fig. 12. Multiple bump mapping results. Again, both aver-
age error and standard-deviation are lower for the CKF case
than the leading platform.

produces a complementary bias, which reduces the total
error.

When the robot reaches the highest point on the ramp,
it experiences a sharp pitch angle change, and a signifi-
cant error is observed. The reason for this phenomenon
is the rigid robot structure, which makes corners’ map-
ping a challenging task. Once the leading platform’s front
two wheels pass the corner, it has a momentary fall in the
pitch direction until the two rear wheels pass the corner.
It also produces a force on the rear platform due to the
linking beam. This phenomenon repeats in all the scenar-
ios. Due to the filter’s characteristics, the CKF algorithm
is less sensitive to noisy measurements, presenting bet-
ter results in all scenarios. This ability also contributes
to peaks measurements handling. Rough terrain experi-
ment (Fig. 13) is performed to observe mapping behavior
in more realistic conditions. This rough surface produces
many slippages and sensors errors. However, the robot
successfully maps the three different bumps in the terrain.
In this experiment, the error plot includes many fluctua-
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Fig. 13. Rough terrain experiment results. One can see that
although the leading platform maps the second bump with
high error, the CKF manages to map the bumps with small
errors in the width and height.

tions. An explanation for this behavior is the measure-
ments accuracy of the sensors. The sensors noise level
and inner low pass filter affect the robot’s measurement
quality. The IMU sensor used in our experiments comes
with small SNR (Signal Noise Ratio), low resolution and
increased bias. When moving along a rough terrain, con-
stant errors are measured and the algorithm needs to be
selective.

A summary of the errors calculation, expressed by
zrelative = 1

N ∑ |zReal − zi|/zmax [%], is presented in Ta-
ble 1.

As shown, the CKF algorithm has 38% better map-
ping results than the leading platform. In addition, the
CKF standard deviation (STDEV) is lower than the lead-
ing platform. This series of experiments and simulations
prove the robustness and efficiency of the CKF mapping
algorithm to the overall performance of the robot.

6. Conclusions

This research presents a method for terrain mapping
along a pre-defined trajectory without external sensors,
using two identical platforms, coupled by an articulated
connecting mechanism. It specifically aims at detect-
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Table 1. Experiments error.
{average [cm]}; (maximum [cm]); [relative [%]]

Scenario CKF Leading
platform

Single
robot

Constant
velocity
torque

Ramp {0.5} (1)
[3.33%]

{0.6} (1)
[4%]

– –

Bump {0.36}
(1.5)
[2.4%]

{0.5} (2.4)
[3.33%]

{0.9}
(2.2)
[6%]

Leading:
{1} (1.5)
[6.66%]
CKF:
{1.2} (2.2)
[8%]

Multiple
bumps

{1} (1.5)
[6.66%]

{1.6} (3.5)
[11%]

– –

Crosswalk {0.6}
(6.5)
[4%]

{0.8} (1.8)
[5.33%]

– –

Rough
terrain

{2} (5)
[13.33%]

{2.5} (5)
[16.66%]

– –

Total {0.91}
[6%]

{1.26}
[8.4%]

– –

ing irregularities in narrow environments such as under-
ground tunnels and pipes where the use of external sen-
sors is limited or impossible. During the terrain explo-
ration, the robot gathers information from the two plat-
forms and the connecting mechanism to generate three
maps. The first two maps are constructed by using odo-
metric data from the leading platform and the rear plat-
form (time shifted), and the third map is constructed us-
ing the connecting mechanism and a forward-kinematics
model. These three maps behave as input sets to a Cen-
tralized Kalman Filter (CKF) data fusion algorithm. By
analyzing the quality of the measurements at each time
step, the CKF grades the data according to the correlation
factor, and estimates the current step values according to
previous data. Once completed, an elevation map in the x-
z plane of the terrain is produced. In order to examine the
mapping performance of the CKF algorithm, a series of
simulations and experiments with a prototype robot were
conducted. The simulations include measurements and
slippages errors in various environments, and multiple
bumps and rough terrain surfaces. Based on preliminary
results, the mapping algorithm was modified by perform-
ing adaptive velocity control and adaptive algorithm pa-
rameters, and the mapping results were compared with the
results of a single platform as a reference. Based on these
satisfactory results, we conclude that inertial mapping in
challenging terrains is a viable solution in environments
and scenarios that cannot utilize other navigation and inte-
roceptive and exteroceptive sensing. The CKF algorithm
is a suitable tool for data fusion in such mapping tasks. By
including the dynamic model of the robot, along with slip-
page identification and classification, the enhanced CKF
algorithm produces better mapping results. Moreover, the
unique structure of the robot and the CKF algorithm de-
sign reduce the effect of slippages on the output results.

Future work will strive to construct a complete 3-D map
by using a simple coverage algorithm (forward and back-
wards), or by utilizing multiple robots. For a complete
3-D map, additional data such as platforms’ roll and yaw

angles, along with calculation of the y-axis position of the
robot, should be added to the estimation model as part of
the state vector variables. It is imperative to distinguish
between lateral movement of each platform according to
the world coordinate and the relation between each other.
However, this can be achieved by using the joints angles
on the connecting beam in addition to the 6-DOF IMU
data mounted on each platform. The measurement noise
covariance matrix will then have an additional weight pa-
rameter concerning the y-axis and its effect on the estima-
tion procedure and the output map.

When external sensing is possible, our method does not
need to completely replace current methods such as LRF
or stereo vision. The information using these methods
can then be fused into our maps to increase accuracy and
reliability. Including additional sensors with similar data
can expand the estimation model with more inputs that
will enhance the estimation procedure.
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